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Abstract

Stability of mixed convection flow past vertical flat plate have been investigated here using compound matrix method (CMM) to solve linearized
equations arising out of a spatial analysis and by direct numerical simulation (DNS) using a Boussinesq approximation. CMM is applied to study
spatial stability of mixed convection flow past a vertical plate. A double loop in the neutral curve is shown in the forced convection limit of
opposing flows for the first time. To check this and other observations of the linear analysis, two-dimensional Navier–Stokes equations are also
solved here with the buoyancy term represented by the Boussinesq approximation. This type of receptivity study, by direct simulation have
been extended here for mixed convection flows. Also, we establish the presence of a spatio-temporally growing wave-front for this flow—that
was shown to exist in Sengupta et al. [T.K. Sengupta, A.K. Rao, K. Venkatasubbaiah, Spatio-temporal growing wave-fronts in spatially stable
boundary layers, Phys. Rev. Lett. 96 (224504) (2006) 1–4; T.K. Sengupta, A.K.Rao, K. Venkatasubbaiah, Spatio-temporal growth of disturbances
in a boundary layer and energy based receptivity analysis, Phys. of Fluids 18 (094101) (2006) 1–9] for boundary layer developing over a horizontal
flat plate in the absence of heat transfer.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Despite significant advances made in hydrodynamic stability
theory, there are many issues of flow transition (those affected
by more than one physical mechanisms or due to the pres-
ence of simultaneous multiple unstable modes), remain incom-
pletely understood. Mixed convection flow is a typical exam-
ple, seen in many engineering devices. In pure hydrodynamic
scenario, flow instabilities are caused due to complex interac-
tions between inertial and viscous mechanisms of exchanging
momentum-detailed description of the same are given in Drazin
and Reid [3]. When heat transfer effects are included, ensuing
instability requires taking into consideration of energy transfer,
along with the added buoyancy-induced effects in momentum
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conservation equation. These added effects make the corre-
sponding flow instability studies further complicated. A com-
prehensive review of heat transfer aspect of mixed convection
are given in Gebhart et al. [4]. It has been noted by Brewster and
Gebhart [5] that in the mixed convection regime, instability is
due to growth of small disturbances that can be studied by lin-
earized governing equation. Such an approach for instability of
flows over a horizontal plate with heat transfer have been stud-
ied in Wu and Cheng [6], Chen and Mucoglu [7], Sengupta and
Venkatasubbaiah [8] and other references contained therein. In
Sengupta and Venkatasubbaiah [8], it has been shown that there
exist a critical buoyancy parameter, above which a very unsta-
ble higher frequency variation ensues, in addition to the pure
hydrodynamic mode characterized by lower frequency distur-
bances. Both of these modes for the flow past heated horizontal
plates were obtained by the linearized spatial stability analysis
performed using CMM. For the first time, existence of critical
buoyancy parameter was shown theoretically that has been de-
tected in the experiments by Wang [9] earlier.
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Nomenclature

Re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reynolds number
Gr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grashof number
Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prandtl number
Rix . . . . . . . . . . . . . . . . . . . . . . . . . . Buoyancy parameter
δ∗ . . . . . . . . . . . . . . . . . . . . . . . . displacement thickness

k . . . . . . . . . . . . . . . . . non-dimensional wave number
β0 . . . . . . . . . . . . . non-dimensional circular frequency
ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stream function
ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vorticity
Ff . . . . . . . . . . . non-dimensional frequency parameter
For flow past vertical plates, induced body force due to heat
transfer is either parallel or anti-parallel to the mean convection
direction—as shown schematically in Fig. 1. These are com-
monly referred to as assisting and opposing flows. Like other
convection dominated unseparated flows, instability of mixed
convection flow past vertical plates also occur via growth of
small disturbances. Thus, this has been studied by linear anal-
ysis in Mucoglu and Chen [10], Brewstar and Gebhart [5] and
Moresco and Healey [11]. These analyses have been tradition-
ally performed using temporal theory (see, e.g., Mucoglu and
Chen [10]). The equilibrium assisting flow was obtained by lo-
cal non-similarity method and it was noted that the buoyancy
force stabilizes the flow. However, experimental studies show
the instability to be related to spatial growth of disturbances
when the flow is excited by fixed frequency sources. Hence a
spatial theory is preferred to study the stability of mixed con-
vection flows, as in Lee et al. [12]. They reported results for the
buoyancy parameter Rix = Grx/Re2

x in the range between zero
and infinity, where Grx and Rex are the Grashof and Reynolds
numbers based on current length. Lee et al. [12] and Moresco
and Healey [11] have studied mixed convection flow over the
entire range of Rix , but reported two unstable modes of dis-
turbance for natural convection dominated flows only. In the
present work, existence of two unstable modes and therefore
two loops of neutral curve is established in the forced convec-
tion regime.

Additionally, in the present study we focus upon both the
linear and nonlinear route of instability to fixed frequency wall
excitations. First, the linear spatial stability results for mixed
convection flow past vertical plate are reported using CMM to
solve the stability equations. CMM allows circumventing the
stiffness that is inherent with viscous instability problems. De-
tailed description of CMM is to be found in Drazin and Reid
[3], Allen and Bridges [13,14] and Sengupta and Venkatasubba-
iah [8] and its use for mixed convection flow past vertical plate
is reported here for the first time. All these stability analyses
suffer from the restriction of either nonlinearity or nonparal-
lelism of the mean flow or due to both.

Qualitative and quantitative differences exist between the
linear spatial theory and experimental results for flows with
and without heat transfer. For flows without heat transfer, Fasel
and Konzelmann [15] have studied effects based on solution of
complete Navier–Stokes equation to include all possible non-
parallel and nonlinear effects. This represents direct numerical
simulation (DNS) of the laboratory experiments of Schubauer
and Skramstad [16], where the response of the boundary layer
to a vibrating ribbon at different frequencies were investigated.
Fig. 1. Mixed convection flow over a vertical flat plate.

So far, no such studies have been undertaken for mixed convec-
tion flows. In the present exercise we also report the complete
nonlinear, nonparallel analysis of mixed convection flow past
vertical plates by solving the time-dependent Navier–Stokes
equation. In flows with heat transfer, Lee et al. [17] have re-
ported nonparallel instability studies for flow over inclined
heated platefrom vertical to horizontal position. They used a
nonparallel formulation based on an order-of-magnitude analy-
sis. However, it is necessary to evaluate the results of the paper
closely. For example, the critical Reynolds number (Recr) value
attributed to experimental results in Schubauer and Skramstad
[16] is erroneously given as Recr = 378, whereas, Fig. 11 of
Schubauer and Skramstad [16] clearly shows this to be in ex-
cess of 400. Lee et al. [17] have calculated this as Recr = 374
and claimed excellent agreement with experiment. They also
obtained this Recr for Ff = β0ν/U2∞ = 63.61 × 10−6, that
is more than six times lower than the actual value given in
Schubauer and Skramstad [16]. Here, βo is the circular fre-
quency of wall-excitation; ν is the kinematic viscosity and U∞
is the boundary layer edge velocity. In a critique of early non-
parallel methods, Tumin [18] cites neglecting the dependence
of eigen functions on streamwise coordinate as responsible for
the discrepancy. He used the theory of multiple scales to incor-
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porate nonparallel effects for both traveling wave and stationary
longitudinal-vortices mode solutions. Stabilizing effects due to
nonparallelism of the mean flow was reported by Tumin [18].
Thus, the past studies have not been able to provide correct Recr

at the correct Ff , based on linearized quasi-parallel and weakly
nonparallel models for the stability properties of mixed convec-
tion flows.

Present study attempts to investigate the linearized parallel
spatial stability of the mixed convection assisting and oppos-
ing flows in the forced convection limit by using CMM and to
study nonparallel, nonlinear stability of the same based on the
solution of complete Navier–Stokes and energy equations to in-
clude all possible effects for two-dimensional flows. We have
used the wall excitation model of Fasel and Konzelmann [15]
for the DNS of mixed convection flow over the vertical plate.

The paper is structured in the following manner. Governing
equations are given in the next section. Linear stability analysis
is discussed in Section 3. Direct numerical simulation of the
flow is reported in Section 4. The paper closes with a summary
and some comments in Section 5.

2. The governing equations

We consider the laminar two-dimensional motion of fluid
past a semi-infinite vertical plate, with the free stream velocity
and temperature denoted by, U∞ and T∞. The flow configu-
rations for assisting and opposing flows are shown in Fig. 1.
We consider the flow over isothermal vertical plate, for which
the surface temperature (Tw) is greater than the free stream
temperature (T∞). Governing equations are presented in non-
dimensional form with the buoyancy term modeled by the
Boussinesq approximation. Non-dimensionalization of equa-
tions are performed by introducing an appropriate length (L),
velocity (U∞), temperature (�T = Tw − T∞) and pressure
scales (ρU2∞). These equations for the velocity and tempera-
ture fields are as given in Gebhart et al. [4],

∇ · �V = 0 (1)

D �V
Dt

= ± Gr

Re2
T − ∇p + 1

Re
∇2 �V (2)

DT

Dt
= 1

Re Pr
∇2T (3)

where T = (T ∗ − T∞)/�T and Gr = gβt�T L3/ν2; Re =
U∞L/ν and Pr = ν/α where α is the thermal diffusivity of
the fluid; T ∗ is the dimensional temperature in the field. In the
momentum conservation equation, the quantity Gr/Re2, is also
known as the Richardson number (Ri). Positive and negative
signs of Ri refer to assisting and opposing flows, respectively.
The Grashof number weighs the relative importance of buoy-
ancy and viscous diffusion terms and in the mixed convection
regime, Ri is of order one.

3. Linear stability analysis

For studying linear instability of mixed convection flow over
a vertical flat plate, equilibrium and disturbance fields are sep-
arated and their equations are similar to that obtained in Sen-
gupta and Venkatasubbaiah [8] and only essential details are
given below.

3.1. Equilibrium or mean flow equations

The mean flow equations are obtained by invoking boundary
layer approximation for two-dimensional steady incompress-
ible flow with constant properties and Boussinesq approxima-
tion. The mean flow equations are obtained using the follow-
ing variables: ηs = y

√
U∞/νx for the independent variable;

u/U∞ = F ′ and (T ∗ − T∞)/(Tw − T∞) = T for the dependent
variables and are obtained from the solution of (Oosthuizen and
Naylor [19]),

F ′′′ + FF ′′

2
± RixT = 0 (4)

T ′′ + Pr

2
FT ′ = 0 (5)

where Rix = Grx/Re2
x is the buoyancy parameter and ± signs

are for the buoyancy term for assisting and opposing flows, re-
spectively. In these equations, primes indicate derivatives with
respect to ηs . As Rix is a function of x, similarity solution does
not exist. However, if Rix is small, then one can obtain the per-
turbation solution by representing the dependent variables by,

F = F0 + RixF1 + (Rix)
2F2 + · · ·

T = θ0 + Rixθ1 + (Rix)
2θ2 + · · ·

where F0 and θ0 are the solution for pure forced convection
cases for Rix = 0. Thus, a formal perturbation series analysis
provides the governing equations for the mean flow as given
by the following sets of equations—expressed for up to second
order only,

F ′′′
0 + F0F

′′
0

2
= 0 (6)

F ′′′
1 + F0F

′′
1

2
+ F1F

′′
0

2
± θ0 = 0 (7)

F ′′′
2 + F0F

′′
2

2
+ F1F

′′
1

2
+ F2F

′′
0

2
± θ1 = 0 (8)

θ ′′
0 + Pr

2
F0θ

′
0 = 0 (9)

θ ′′
1 + Pr

2
F0θ

′
1 + Pr

2
F1θ

′
0 = 0 (10)

θ ′′
2 + Pr

2
F0θ

′
2 + Pr

2
F1θ

′
1 + Pr

2
F2θ

′
0 = 0 (11)

These equations are solved subject to the boundary conditions
at ηs = 0: F0 = F ′

0 = F1 = F ′
1 = F2 = F ′

2 = 0 and θ0 = 1, θ1 =
θ2 = 0 and as ηs → ∞: F ′

0 = 1, F ′
1 = F ′

2 = 0 and θ0 = θ1 =
θ2 = 0.

The mean flow in air is obtained by solving Eqs. (6) to (11)
by the four-stage Runge–Kutta method using shooting tech-
nique with Pr = 0.7, and by taking maximum co-ordinate,
(ηs)max = 12 divided into 4000 equal sub-intervals. For differ-
ent Re and Rix , mean flow solutions are obtained for assisting
and opposing flows. Non-dimensional velocity and temperature
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Fig. 2. Mean flow profiles for assisting ( with Rix = 0.1) and opposing (with
Rix = 0.001) flows given by (a) first order perturbation solution for assisting
flow; (b) second order perturbation solution for assisting flow and (c) first order
perturbation solution for opposing flow.

profiles are as shown in Fig. 2, obtained up to second order ac-
curacy, for the assisting (with Rix = 0.1) and opposing flows
(with Rix = 0.001). There is only a small deviation between the
first and second order quantities for the velocity field for the
assisting flow at the high value of Rix = 0.1. Stability studies
conducted here are for lower Rix values, for which higher or-
der effects will be further negligible. We will also show that the
stability of the two mean flows of a and b in Fig. 2, have neg-
ligible difference for the eigenvalues and the eigen-spectrum.
Here, we do not see any difference in the temperature distribu-
tion inside the boundary layer, when the second order terms are
added.

3.2. Stability equations

Here, linear stability equations for two-dimensional mixed
convection flow over a vertical plate have been derived by start-
ing from the non-dimensional equations (1) to (3). All physical
variables are split into the mean (given by Eqs. (6) to (11)) and
the disturbance components in the following,

u(x, y, t) = Ū (x, y) + εud(x, y, t)

v(x, y, t) = V̄ (x, y) + εvd(x, y, t)

p(x, y, t) = P̄ (x, y) + εpd(x, y, t)

T (x, y, t) = T̄ (x, y) + εTd(x, y, t)

with ε as the non-dimensionalizing small parameter of the prob-
lem. Stability equations are obtained by making additional par-
allel flow assumption (Ū = Ū(y), V̄ = 0 and T̄ = T̄ (y)), so
that a normal mode spatial instability analysis is possible by
looking for a solution of the linearized equations of the follow-
ing form:

[ud, vd,pd, Td ] = [
f (y),φ(y),π(y),h(y)

]
ei(kx−β0t) (12)

For the spatial analysis, one fixes a real frequency that is indi-
cated here by β0. After substituting Eq. (12) into Eqs. (1) to (3)
and simplifying, one obtains the following system of equations
for disturbance quantities,

i(kŪ − β0)(k
2φ − φ′′) + ikŪ ′′φ

= ± Gr
2
ikh′ − 1

(φiv − 2k2φ′′ + k4φ) (13)

Re Re
i(kŪ − β0)h + T̄ ′φ = 1

Re Pr
(h′′ − k2h) (14)

In deriving these equations, length scale (L) is chosen as the
displacement thickness (δ∗) of the boundary layer. These are the
well-known Orr–Sommerfeld equations for mixed convection
flows, governing the amplitudes of disturbance normal velocity
and temperature field. Here, primes denote differentiation with
respect to y. Eqs. (13) and (14) are to be solved subject to the
six boundary conditions:

at y = 0: φ,φ′ = 0 and h = 0 (15)

as y → ∞: φ,φ′, h → 0 (16)

Homogeneous boundary condition for h at the wall corresponds
to eigenvalue analysis. In contrast, for receptivity analyses,
h = h(y = 0, t) is prescribed at the wall, representing a specific
thermal input. As shown earlier in Sengupta et al. [20], these
two analyses are related through the disturbance amplitude ex-
pression for linear systems. Eqs. (13) and (14), together with
the boundary conditions (15) and (16), reveal that the tempera-
ture field, as given by Eq. (14), decouples from the velocity field
in the free stream (y → ∞), as T̄ ′ ≈ 0 there. Thus, the charac-
teristic modes at free stream are given by: λ5,6 = ∓S, where
S = [k2 + iRe Pr(k − β0)]1/2. However, the disturbance mo-
mentum equation is not decoupled, as Eq. (13) at the free stream
simplifies (with Ū = 1 and mean flow derivatives as zero) to,

i(k − β0)(k
2φ − φ′′)

= ± Gr

Re2
ikh′ − 1

Re
(φiv − 2k2φ′′ + k4φ) (17)

This equation for the disturbance amplitude of normal compo-
nent of velocity represents a forced dynamics, with the thermal
field providing the forcing. The homogeneous part of the so-
lution is governed by the following characteristic exponents,
λ1,2 = ∓k and λ3,4 = ∓Q, where Q2 = k2 + iRe(k − β0). Out
of these six characteristic values, we discard those modes that
grow with y in CMM. Thus, the admissible fundamental solu-
tion components are given by,

φ1 = e−ky; φ3 = e−Qy and φ5 = e−Sy (18)

when the real part of k,Q and S are all positive. We represent
the governing stability equations as a set of six first order ordi-
nary differential equations by introducing the vector: u(y, .) =
[u1(y, .), u2(y, .), u3(y, .), u4(y, .), u5(y, .), u6(y, .)]T . Where,
u1 = φ, u2 = φ′, u3 = φ′′, u4 = φ′′′, u5 = h and u6 = h′. The
governing system of equations given by Eqs. (13) and (14) can
be written as,

{u′
j } = [A]{uj } (19)

where the non-zero elements of the matrix A are given by,
a12 = 1, a23 = 1, a34 = 1, a41 = −a, a43 = b, a46 = c, a56 = 1,
a61 = e, a65 = d ; with a = k4 + iRe kŪ ′′ + iRe k2(kŪ −
β0); b = 2k2 + iRe(kŪ − β0); c = ±ikGr/Re; d = k2 +
iRe Pr(kŪ − β0) and e = Re PrT̄ ′.

These equations are further modified for CMM, details of
which can be obtained in Sengupta and Venkatasubbaiah [8].
One obtains the induced system equations for the present prob-
lem as,
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y′
1 = y2 (20)

y′
2 = by1 + cy4 + y5 (21)

y′
3 = y4 + y6 (22)

y′
4 = dy3 + y7 (23)

y′
5 = cy7 + y11 (24)

y′
6 = y7 + y8 + y12 (25)

y′
7 = dy6 + y9 + y13 (26)

y′
8 = by6 + y9 − cy10 + y14 (27)

y′
9 = by7 + dy8 + y15 (28)

y′
10 = y16 (29)

y′
11 = −ay1 + cy13 (30)

y′
12 = y13 + y14 (31)

y′
13 = ey1 + dy12 + y15 (32)

y′
14 = ay3 + by12 + y15 − cy16 + y17 (33)

y′
15 = ey2 + ay4 + by13 + dy14 + y18 (34)

y′
16 = ey3 + y19 (35)

y′
17 = ay6 + y18 − cy19 (36)

y′
18 = ey5 + ay7 + dy17 (37)

y′
19 = ey6 + y20 (38)

y′
20 = ey8 − ay10 + by19 (39)

where the primes indicate differentiation with respect to y, the
wall-normal coordinate. We note that the usage of asymptotic
boundary conditions at y = Y∞ allows us to convert the original
boundary value problem to an initial value problem, with the
initial conditions as given in Sengupta and Venkatasubbaiah [8].

Main aim of the instability study is to identify critical param-
eters that mark the onset of instability, i.e. to obtain Recr and the
corresponding circular frequency, βcr . Here we present results
for some representative cases that will be used to compare with
DNS results. Neutral curves for assisting and opposing flows
are shown in Figs. 3 and 4, respectively. Critical parameters for
assisting and opposing flows are tabulated and shown in Ta-
bles 1 and 2.

In Fig. 3(a), the neutral curve for the case of Rix = 0.0,
i.e. for the Blasius profile is shown—that is computed here to
validate the present formulation and method with the results
reported earlier in Sengupta et al. [20]. The essential differ-
ence between the two methods lies in the fact that we solve
the complete set of disturbance equation here (both Eqs. (13)
and (14)), as compared to that in Sengupta et al. [20], where
only Eq. (13) was solved by CMM. The calculated eigenvalues
(as shown in tabulated form in Sengupta and Venkatasubba-
iah [8]) match exactly with that in Sengupta et al. [20]. Also, the
neutral curve for the most unstable mode, as shown in Fig. 3(a),
gives Recr = 519.018 and βcr = 0.12 that is identical with pre-
viously published results. This validates the present formulation
and the method of linear stability analysis.

In Fig. 3(b), the neutral curve for the assisting flow with
Rix = 0.01 is shown, giving Recr = 589.3 and corresponding
βcr = 0.122, that indicates stabilization of the assisting flow. In
Fig. 3. Spatial amplification contours shown in (Re − β0) plane for assisting
flows for indicated values of Rix . The neutral curves (kimag = 0) are the outer-
most contours. Note the rays OA and OB in (a) are chosen for which simulation
results are reported in Fig. 11.

Fig. 3(c), the neutral curve for assisting flow with Rix = 0.1
is shown, that indicates further stabilization with Recr = 916.0
and βcr = 0.133. This type of alteration of stability properties
by buoyancy effects have been reported by other investigators
for assisting flows. However, quantitative values of growth and
decay rates vary significantly. This can be attributed to differ-
ent methods used to solve stability equations. We also note that
for the case of Fig. 3(c), as the value of Rix = 0.1 is large,
one should include second order perturbation terms in the mean
flow representation of Eqs. (8) and (11), to investigate the varia-
tion of stability properties with retention of perturbation terms.
However, when this was performed, no differences for either
the eigen-spectrum or the neutral curve was found even for this
large value of Rix .

In Fig. 4(a), the neutral curve is shown for opposing flow
with Rix = 0.01 that indicates Recr = 440.5 and βcr = 0.123,
i.e. a destabilization of the flow in comparison with Rix = 0
case. In this figure, we have marked two straight lines originat-
ing from the origin and they represent the path taken by constant
physical-frequency disturbances, that will be used for direct
simulation of Navier–Stokes and energy equations in the next
section. When Rix is increased to 0.02, Recr further reduces to
Recr1 = 359.5, while βcr1 increases to 0.129—indicating fur-
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(a)

(b)

Fig. 4. (a) Spatial amplification contours shown in (Re−β0) plane for opposing
flow with Rix = 0.01. The neutral curve (kimag = 0) is indicated by the outer
contour. The rays OA and OB are for the constant frequency wall-excitation
cases, results of which are shown in Figs. 7(a) and 7(b). The points P and Q
correspond to the middle of the wall-exciter. (b) Spatial amplification contours
shown in (Re−β0) plane for opposing flow with Rix = 0.04. The neutral curves
(kimag = 0) are indicated by the outer contours. The ray from the origin corre-
sponds to a constant frequency wall-excitation case result of which is shown in
Fig. 8. Point P correspond to the middle of the wall-exciter.

Table 1
Critical parameters for assisting flows

Case Rix Recr βcr

1 0.0 519.018 0.120
2 0.001 526.529 0.121
3 0.01 589.30 0.122
4 0.1 916.0 0.133

ther destabilization at higher frequencies. Such deterioration
of stability properties for opposing flows have been noted by
Lee et al. [12] due to buoyancy effects. However, presence of
two distinct lobes of the neutral curve for opposing flows for
Rix � 0.02, has not been reported before. Lee et al. [12] in-
dicated two maxima for the growth rate versus streamwise dis-
tance plot, without distinct lobes in the neutral curve—as shown
Table 2
Critical parameters for opposing flows

Case Rix Recr1 Recr2 βcr1 βcr2

1 0.0001 518.2 – 0.120 –
2 0.001 511.3 – 0.120 –
3 0.01 440.5 – 0.123 –
4 0.02 359.5 7705.3 0.129 0.0799
5 0.03 283.6 3747.4 0.137 0.118
6 0.035 248.2 2714.8 0.145 0.139
7 0.04 215.29 1996.0 0.154 0.165

here. According to them, the two maxima are due to the pres-
ence of two distinct unstable modes. Presence of two lobes of
the neutral curve here implies presence of two Recr and βcr . For
Rix = 0.02, we have already noted one such pair, the other pair
is given by, Recr2 = 7705.3 and βcr2 = 0.0799. These critical
parameters for opposing flow are given in Table 2.

Two lobes of neutral curve in Fig. 4(b) for Rix = 0.04
case give two critical Reynolds numbers Recr1 = 215.29 and
Recr2 = 1996.0, while the corresponding critical circular fre-
quencies are βcr1 = 0.154 and βcr2 = 0.165. We note that with
increasing value of Rix , both the critical Reynolds numbers
decrease continuously, with the second one decreasing rather
sharply. From Table 2, we note that βcr1 increases from 0.120
to 0.154 for 0.0001 � Rix � 0.04 and βcr2 increases from
0.0799 to 0.165 for 0.02 � Rix � 0.04. Presence of multi-
lobe neutral curves have also been shown for mixed convec-
tion flow over horizontal plate in Sengupta and Venkatasubba-
iah [8]. The common features of multiple lobes in the neutral
curves for mixed convection flows past horizontal and verti-
cal plates at low speeds are due to higher order of the sys-
tem, caused by the coupling of momentum and energy equa-
tions.

4. Direct numerical simulation

Stability results presented in the previous section are for
parallel boundary layer developing over a vertical plate, ob-
tained after linearizing the governing equations. In the process,
we report the presence of distinct two-lobed neutral curve for
opposing flows for the most unstable mode. It is pertinent to
investigate this further, without being restricted by linear and
parallel flow approximations. Also, all linear stability analysis
suffers from the normal mode approach, i.e. the various modes
present are sought separately and their actions are considered
to be independent of each other. This can be rectified by the re-
ceptivity approach—as in Sengupta et al. [20] for the linearized
response or by solving the Navier–Stokes equation with respect
to specific excitation. In the following, we follow the latter
by performing a direct simulation of the 2D flow field. The
Navier–Stokes equations for incompressible flows are solved
in stream function (ψ ) and vorticity (ω) formulation. The gov-
erning equations (1) to (3) are written in (ψ − ω) formulation
in an orthogonally transformed plane as given by,

∂
(

h2 ∂ψ
)

+ ∂
(

h1 ∂ψ
)

= −h1h2ω (40)

∂ξ h1 ∂ξ ∂η h2 ∂η



K. Venkatasubbaiah, T.K. Sengupta / International Journal of Thermal Sciences 48 (2009) 461–474 467
h1h2
∂ω

∂t
+ ∂ψ

∂η

∂ω

∂ξ
− ∂ψ

∂ξ

∂ω

∂η

= ∓ Gr

Re2

(
∂h1T

∂η

)
+ 1

Re

[
∂

∂ξ

(
h2

h1

∂ω

∂ξ

)
+ ∂

∂η

(
h1

h2

∂ω

∂η

)]

(41)
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∂T
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(42)

where ξ , η are coordinates in transformed plane and h1, h2
are the scale factors given by, h1 = (x2

ξ + y2
ξ )1/2 and h2 =

(x2
η + y2

η)1/2, for the orthogonal mapping used here. The gov-
erning equations, in terms of ψ and ω, are given in Arpaci and
Larsen [21] in Cartesian frame. Representation of the same in
an orthogonally mapped plane is easily performed (not shown
here) to finally obtain the equations given above. Various non-
dimensionalizations remain the same, as in Section 2. In Sec-
tion 3, the length scale (L) was chosen as the displacement
thickness, a quantity that varied with streamwise distance. In
this section, a reference length would instead be chosen as a
constant, to be fixed later.

4.1. Boundary and initial conditions

Specification of proper boundary conditions and their imple-
mentation into the numerical method is an issue of great impor-
tance in DNS. To obtain higher resolution and easily implement
boundary conditions, we compute the equations in the orthog-
onally transformed (ξ − η)-plane, obtained from the Cartesian
frame via the transformations given by,

x(ξ) = xin + LD

[
1 − tanh[β1(1 − ξ)]

tanhβ1

]
(43)

y(η) = Lh

[
1 − tanh[β1(1 − η)]

tanhβ1

]
(44)

with 0 � ξ, η � 1. In the above, xin is the streamwise coordi-
nate of the inflow of the computational domain whose stream-
wise extent is given by LD = xout − xin, where xout is the loca-
tion of the outflow of the computational domain—taken as ei-
ther 6L or 12L-depending upon the problem solved. Similarly,
the second transformation relates the wall-normal physical dis-
tance of Lh to the transformed co-ordinate η. Here, we have
used β1 = 2 to obtain desired grid clustering near the inflow
and the wall. A very localized wall-excitation is applied at a lo-
cation near the inflow and for this reason the grid clustering in
its vicinity is required. This type of tangent hyperbolic transfor-
mation apart from producing desired grid clustering, also helps
in reducing aliasing error and is widely used in simulations.

In the above equations, dependent variables represent total
quantities composed of primary and disturbance component. In
the following, we discuss the boundary conditions separately—
so that the process of obtaining the mean and disturbance flow
are clearly revealed. For the disturbance flow, these boundary
conditions reveal the nature of applied excitation at the wall.
However, the boundary conditions for Eqs. (40) to (42) will be
used for the total variable for the receptivity calculations. At
the inflow and on the top of the domain, free stream boundary
conditions for the primary flow are applied as,

T = 0; ∂ψ

∂η
= h2, ω = 0 (45)

Similarly, the required boundary conditions for the primary
flow at the wall are,

T = 1; ψ = constant, ω = − 1

h2
2

∂2ψ

∂η2
(46)

For the disturbance quantities at the wall, we use the no-slip
along with a permeable-wall time-dependent condition, that
represents a simultaneous blowing and suction on a localized
strip to generate waves (as in Fasel and Konzelmann [15]).
Corresponding unsteady disturbance flow conditions for non-
dimensional variables are given as,

ud = 0, vd = Am sin(βt), Td = 0 (47)

where β is the non-dimensional disturbance frequency and Am

is amplitude of the disturbance. The amplitude function is de-
fined along the blowing and suction strip, for x1 � x � xst (as
given in Fasel and Konzelmann [15]):

Am = 15.1875

(
x − x1

xst − x1

)5

− 35.4375

(
x − x1

xst − x1

)4

+ 20.25

(
x − x1

xst − x1

)3

(48)

And for xst � x � x2:

Am = −15.1875

(
x2 − x

x2 − xst

)5

+ 35.4375

(
x2 − x

x2 − xst

)4

− 20.25

(
x2 − x

x2 − xst

)3

(49)

where xst = (x1 + x2)/2; with x1 and x2 representing the be-
ginning and end of the streamwise extent of the strip.

This distribution produces clean localized vorticity distur-
bances. The disturbance generation employing blowing and
suction strip, represents spatial downstream development of
disturbance waves, as originally observed in laboratory experi-
ments for flows without heat transfer [16].

At the outflow, boundary conditions for the total variables
are given by,

∂v

∂x
= 0; ∂ω

∂t
+ Uc

∂ω

∂x
= 0

∂T

∂t
+ Uc

∂T

∂x
= 0 (50)

where Uc is convective speed of the disturbances through the
outflow and here it is taken as the free-stream speed.

For the numerical simulations performed here, results are
obtained with a small amplitude of the disturbances at the wall
to allow comparison with the results of linear stability the-
ory. For the DNS study, we have chosen the parameters as
U∞ = 30 m/s, ν = 1.5 × 10−5 m2/s and L = 0.05 m or 0.4 m
for the cases with single and two-loop neutral curves depending
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upon the value of Rix . Navier–Stokes equations (40) to (42), to-
gether with the boundary conditions specified above are solved
using high accuracy compact scheme OUCS3, whose details
are given in Sengupta et al. [22] and [23]. This, formally second
order accurate scheme, is optimized for least error in the wave
number plane while evaluating the nonlinear convection terms
of the VTE (41). Further details on the basic scheme and bound-
ary closures are given in [23]. For the fixed reference Reynolds
number (ReL) and Rix , Eqs. (40) to (42) are solved first with the
boundary conditions specified for the primary flow to obtain the
steady state solution.

The steady state solution is thereafter perturbed at the wall
with the simultaneous blowing-suction disturbance of the type
given in Eq. (47) for the fixed frequency parameter Ff =
β/ReL. Results are obtained with the amplitude reduced hun-
dred times of that used in Fasel and Konzelmann [15] to allow
comparison with the results of linear stability theory. For the
Blasius boundary layer excitation that was investigated in [15],
the linear stability analysis in Sengupta et al. [20] have shown
the presence of only a few modes (less than four for moderate
Reynolds numbers), with only one mildly unstable eigenvalue
and the rest of them are all stable. In comparison, the mixed
convection opposing flows past vertical plate are more unsta-
ble (as shown in Section 3) with significantly higher instabil-
ity indicated by the growth rate that is two orders of magni-
tude higher. Also, near critical Reynolds number, many stable
eigenvalues with similar attenuation rates cause modal inter-
actions of the type described in [1,2]. These interactions give
rise to additional spatio-temporal excitation—usually at lower
frequency. These interactions lead to distortion, that may ap-
pear as nonlinear—but they are essentially linear in origin. It is
for these reasons, the amplitude of excitation is taken as one-
hundredth of the amplitude used in Fasel and Konzelmann [15]
to compare with linear theory results, while obtaining percepti-
ble response within the chosen computational domain.

To test the numerical method, we compute a case with ReL =
105, Rix = 0 and Ff = 1.4 × 10−4, as in Fasel and Konzel-
mann [15] with the outflow boundary at xout = 6.0 (correspond-
ing Reynolds number based on displacement thickness δ∗, is
Reδ∗ = 1333) and the location of the top of the computational
domain is at Lh = 0.35, i.e. y∗ = 32.3δ∗. We have used the
tangent hyperbolic grid in streamwise and wall-normal direc-
tion with (800 × 300) points. These can be contrasted with
the grid used in Fasel and Konzelmann [15], who took 68 uni-
formly distributed points in the wall-normal direction, up to a
distance of 6δ∗ only. Disturbances are created at the wall as
localized blowing and suction from a narrow strip located be-
tween x1 = 0.2 and x2 = 0.5, with the corresponding Reynolds
number as Reδ∗ = 243.37 and 384.8, respectively—as mea-
sured from the leading edge of the plate. For these excitation
parameters and location, it is noted from Fig. 3(a) that the dis-
turbances first decay before it enters in the region given by the
neutral curve and amplify. Inside the neutral loop the distur-
bances amplify and they attenuate when they emerge out of
the neutral curve. The computed disturbance streamwise veloc-
ity (ud ) and temperature (Td ), from the solution of Eqs. (40)
to (42), are shown in Fig. 5(a) at a time when the unstable flow
pattern is established and does not change further with time. In
all the frames of Fig. 5, we have drawn two vertical lines that
indicate the beginning and end of the unstable region given by
the linear stability analysis for the chosen frequency. These in-
formations are obtained by drawing the rays, as in Fig. 4, from
the origin with the slope indicating the non-dimensional fre-
quency Ff . The point of entry of this ray in the neutral loop
locate the first vertical line, indicating the beginning of insta-
bility for that frequency and the point of exit from the neutral
loop indicating the right vertical line. Results show good cor-
respondence for the extent of the unstable region obtained by
the linear stability analysis and the present DNS results for the
cases with Rix = 0 and 0.0001 shown in Fig. 5(a) and (b). This
validates the numerical method used here for mixed convection
flow the DNS. In Fig. 5, all the frames are shown at t = 30 after
starting the excitation in each case identically. Thus, the relative
receptivity of the flows are ascertained by comparing the three
cases shown in Fig. 5. In Fig. 5(b) and (c), ud and Td are plot-
ted as function of x at y∗ = 0.648δ∗ for the opposing flows with
Rix = 0.0001 and 0.01 for Ff = 1.4 × 10−4, respectively. One
sees slightly higher amplitude for the case in Fig. 5(b) as com-
pared to the case in Fig. 5(a), with buoyancy destabilizing the
opposing flow. In Fig. 5(c), one notes the envelopes of ud and
Td to show significantly higher amplitudes, as compared to that
shown in Fig. 5(a) and (b). There are features of the flow that
show differences between the results of linear stability analy-
sis and DNS for this higher Rix case. Here, the match is only
qualitative for the extent of the unstable regions as obtained by
linear and nonlinear approaches. The extent is underestimated
by the linear analysis as compared to DNS. In all the cases, ex-
citation is applied near the leading edge of the plate, at identical
locations and in its immediate vicinity the attenuating nature of
disturbance field is not distinctly noticeable.

To provide a quantitative comparison between DNS and lin-
ear stability theory, we plot the growth rate as a function of
streamwise distance for Rix = 0.0 and Ff = 1.4 × 10−4-case
in Fig. 6. In the figure, A0 represents the initial amplitude of
disturbances, taken here at xi = 1.9454 from where DNS indi-
cated continuous growth. From the amplitude envelope we have
calculated A(x) to obtain the quantity in the ordinate of the fig-
ure. For the linear theory, the corresponding ordinate is obtained
from Eq. (12) for the amplitude as,

A(x)

A0(xi)
= e

− ∫ x
xi

ki dx
(51)

Fig. 6 indicates detailed similarity and differences for the DNS
and linear stability calculations. Similar comparisons between
DNS and linear theory were also shown in Seifert and Tumin
[24] for different excitation frequencies. They noted differences
increasing with frequency of excitation.

To test the critical parameters obtained from the linear sta-
bility analysis, we compute a case for Ff = 2.79228 × 10−4

(the non-dimensional excitation frequency), that was marked
in Fig. 4(a) as OA, touching the critical point, without en-
tering the unstable region—for the opposing flow case with
Rix = 0.01. The solution to Eqs. (40) to (42) are obtained and
ud is plotted as a function of x in Fig. 7(a), for a fixed height of
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Fig. 5. Disturbance quantities ud and Td versus x at y∗ = 0.648δ∗ with Ff = 1.4 × 10−4 excitation. Results are shown after the transients are gone and a time
periodic state is reached for (a) Rix = 0; (b) opposing flow with Rix = 0.0001 and (c) opposing flow with Rix = 0.01.
Fig. 6. Comparison of growth rates calculated from linear instability theory
(LST) and direct numerical simulation (DNS) for the case shown in Fig. 5(a)
for Rix = 0.0.

y∗ = 0.648δ∗. The exciter is located at the same location, as in
the case of Fig. 5. Here, as well as in Fig. 5, excitation causes
a local solution that is indicated by high amplitude fluctuation,
followed by the asymptotic solution—as given by the stabil-
ity analysis. From Fig. 7(a), this asymptotic part is seen as the
small amplitude decaying wave solution. As compared to the
case shown in Fig. 5(c), here the disturbance remain all the time
in the damped region except when it touches the neutral curve
at a single point. This type of continuously decaying solution is
seen to occur at the lowest possible frequency—providing the
critical circular frequency. This calculation validates the critical
frequency obtained from the linear stability results of Table 2.
Another interesting phenomenon is also seen from the results
of DNS reported here. This relates to the spatio-temporal grow-
ing wave-front shown in Fig. 7(a). This type of spatio-temporal
growing wave-front has been reported also in Sengupta et al. [1]
for a pure hydrodynamic stability study, where the phenomenon
was established to be related to interactions of multiple de-
caying modes for spatially stable systems. Presented results in
Fig. 7(a) shows that this event is also present for mixed convec-
tion flows. From the plotted figures at t = 5 and t = 8, one notes
this leading wave-front to move like a packet in the downstream
direction, with the amplitude continuously increasing. To show
this phenomenon to be generic, we performed another simula-
tion for Rix = 0.01, for which the exciter is at a location beyond
the upper branch of the neutral curve. Corresponding constant
physical frequency line was identified as OB in Fig. 4(a). In
Fig. 7(b), ud is plotted as a function of x at y∗ = 0.648δ∗
for this opposing flow case excited by a non-dimensional fre-
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quency, Ff = 1.4 × 10−4. In this case, location of the blow-
ing and suction strip is given by x1 = 3.234 (corresponding
Reδ∗ = 1000) and x2 = 3.5 (corresponding Reδ∗ = 1040.31).

Fig. 7. Disturbance velocity ud versus x at y∗ = 0.648δ∗ for opposing flow
with Rix = 0.01, excited at the wall by frequencies given by (a) Ff =
2.79228 × 10−4 and (b) Ff = 1.4 × 10−4.
In this case, following the local solution, the asymptotic part of
the excitation field is seen also as a decaying wave. In com-
parison to the case of Fig. 7(a), here the damping rates are
much lower and thus, the asymptotic part of the solution is seen
over a longer streamwise stretch. The displayed solutions at
t = 2 and t = 4, once again show the leading spatio-temporally
growing wave-front. Thus, the spatio-temporal growing wave-
front is seen to occur due to interaction of multiple modes for
fluid flows—with or without heat transfer. The spatio-temporal
wave-front seen here is the same that was described in [1,2]
for the Blasius profile. It is not a transient response—as estab-
lished in Sengupta et al. [1,2] by solving the problem using
both linear receptivity approach and solution of full Navier–
Stokes equation. In the linear receptivity study, governing Orr–
Sommerfeld equation was solved by Bromwich contour integral
method described in [2,20]. The establishment of the presence
of spatio-temporal growing wave-front is worthwhile, as it can
explain discrepancies between experimental observation and
normal-mode linear stability theory results. We noted in [1,2]
and once again here that the leading wave-packet displays vari-
ation at lower wave numbers and frequencies as compared to
the asymptotic waves. This has an important significance. For
illustration purpose, let us consider the case where the shear
layer is excited by a constant frequency—as indicated by the
line OB in Fig. 4(a). If the center of the asymptotic solution has
reached a streamwise distance indicated by R, then the lead-
ing wave-packet would be ahead of this, say at a point S, where
the flow experiences an excitation corresponding to the time-
scale of the wave-front. The point S can be inside the neutral
loop, even though the operational point R is outside the neutral
Fig. 8. Disturbance quantities ud and Td versus x at y∗ = 0.68126δ∗ for excitation at Ff = 3.0 × 10−5, for opposing flow with Rix = 0.04.
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Fig. 9. Disturbance quantities ud and Td versus x at y∗ = 0.648δ∗ for excitation at Ff = 1.4 × 10−4, for the case of Rix = 0.0 at the indicated times.
loop—as indicated in Fig. 4(a). Thus, the normal mode analysis
would indicate the boundary layer to be stable, while the lead-
ing wave-packet would indicate instability. Once excited, the
leading wave-packet continues to exist. This is not a transient
and the resultant behavior cannot be interpreted by the normal-
mode linear instability theory. However, a receptivity approach,
as in [1,2,20], based on linearized analysis can do so. Also, an
appropriate DNS like the present one can explain the same.

To explain special features of mixed convection bound-
ary layers, like the existence of double loop in the neutral
curve for opposing flows, we have computed another case for
ReL = 8.0 × 105, Rix = 0.04 and Ff = 3.0 × 10−5 with the
location of outflow boundary at xout = 12.0 where the corre-
sponding Reδ∗ = 5798.44. The top of the computational domain
is located here at Lh = 0.2, i.e. at y∗ = 27.59δ∗ with 1600
points in the streamwise direction and 300 points in the wall-
normal direction used for the computation. Here, the blowing
and suction strip is located between x1 = 0.2 (corresponding
Reδ∗ = 748.57) and x2 = 0.3 (corresponding Reδ∗ = 916.81).
Numerically obtained ud and Td are plotted against x at y∗ =
0.68126δ∗ in Fig. 8. In this figure, the linearly unstable re-
gions have been marked again by vertical lines. The two sets
of lines correspond to two loops traversed by a single constant
frequency disturbance—as shown in Fig. 4(b). From Fig. 8,
existence of a double-loop for the neutral curve is seen qual-
itatively only and the extent of stable and unstable region in
the streamwise direction matches only for the lower loop, while
the upper loop match is not clear. This is due to the traveling
waves propagating downstream exhibit interaction of the ther-
mal mode (upper loop) with the hydrodynamic mode (lower
loop mode). Also, due to the occurrence of multiple wave-
packets caused by the dominant hydrodynamic and thermal
modes makes the signal to be multi-periodic—even for the sin-
gle frequency excitation—as was the case for Rix = 0 shown in
Fig. 5(a). Also, the amplitude of variation for Td drastically in-
creases with Rix for opposing flow. This shows the buoyancy
effects to severely destabilize opposing flows, as affected sig-
nificantly by nonlinear effects.

To resolve the issue of linear and non-linear nature of the
disturbance field as obtained by DNS, we have performed two
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Fig. 10. Amplitude envelope of ud versus x for the case of Fig. 9, shown for
three times. Note that the output is scaled by the same ratio, as the input ratio.

additional calculations for Rix = 0.0 case with amplitudes of
0.01Am and 0.005Am, with Am as defined in Eqs. (48) and (49).
In Fig. 9, the results are compared between the two cases at four
discrete times. It is clearly noted that the asymptotic part of
the solution reduces when the amplitude of the blowing-suction
type excitation is reduced. To ascertain whether these cases rep-
resent linear dynamics or not, in Fig. 10, the amplitude envelope
is compared after the higher amplitude excitation case results
are scaled by a factor of two—this being the ratio of the in-
put to the system. Despite the nonlinear and nonparallel nature
of the governing equation, the plotted scaled results in Fig. 10
shows linear nature of the response of the system.

Finally, the issue of the spatio-temporal wave front is inves-
tigated to establish the correct nature of its genesis. In [1] the
analysis for it was made for parallel shear layer and it was noted
that the wave front originates due to the interaction of multiple
modes and they were clearly visible for spatially stable sys-
tems. The leading edge of spatially stable and unstable cases
were exactly at identical locations with identical shape (as in
Fig. 3 of that reference), it is tempting to conclude that this is
due to the initial transients corresponding to a packet created
with the maximum growth rate of the parallel shear layer at that
Reynolds number. This was further explained in [25] where the
leading wave fronts for the two spatially stable cases were an-
alyzed for Re = 1000 with (a) β0 = 0.05 and (b) β0 = 0.15.
These two frequencies correspond to below and above the neu-
tral curve for Re = 1000 and the fast Fourier transform of the
signal at a fixed large time revealed the wavenumbers corre-
sponding to the wave fronts to be very different.

To explain this aspect further for actual shear layers includ-
ing nonlinear and nonparallel nature of instability, we computed
two more cases for Blasius boundary layer (Rix = 0.0) with the
exciter located between x1 and x2, where the Reynolds num-
bers, based on local displacement thickness, are 400 and 450,
respectively. Also, the frequencies of excitation are chosen as
Ff = 2.5 × 10−04 and 3.0 × 10−04. The reason for choosing
these frequencies is that the created disturbances would not go
inside the neutral loop—as shown by the two rays OA and
OB in Fig. 3(a). Thus, the disturbances are created at loca-
tions where the shear layer is sub-critical and the subsequently
they would not be unstable from linear theory point of view, as
they convect downstream. In spite of this, if a spatio-temporal
wave front is created, then the italicized hypothesis given in
the previous paragraph is incorrect. In Fig. 11, the solutions for
these two cases are shown at discrete times and one can clearly
see the presence of leading wave fronts for both the cases. The
main wave-packet is due to the instability of the shear layer
near the exciter where the neutral curve is different from that
given by the linear instability of the parallel shear layer. This
demonstrate the nonparallel effects to be significant at high fre-
quencies, as has been postulated earlier in the literature. The
properties of wave fronts for these two frequencies are also
different-once again repudiating the italicized comment of the
last paragraph.

5. Summary

To study the linear stability of mixed convection flows past
vertical plate, one requires a method to obtain it as a parallel
flow. These equations have been obtained using new variables
in Eqs. (4) and (5), with the small buoyancy effect modeled
by Boussinesq approximation, given by the term involving the
buoyancy parameter Rix , in the momentum equation. As Rix
is small, a regular perturbation method is used to obtain the
mean flow, shown in Fig. 2. Retaining second order terms do
not change the equilibrium flow, whose effects have also been
tested here on the stability property. The linear spatial stability
of the equilibrium flow is investigated here using the compound
matrix method, for mixed convection flow past vertical plate.
Results are shown as neutral curves in Figs. 3 and 4 for assist-
ing and opposing flows for different values of Rix . Results for
the assisting flows in Fig. 3, display increasing stability with in-
creasing assisting buoyancy—as reported by other researchers
also.

A double loop of the neutral curve has been shown here, for
the first time for mixed convection opposing flows, in the limit
of Rix � 0.02. The neutral curve shown in Fig. 4(b), clearly
displays presence of two distinct lobes of the neutral curve.
Presence of two loops give rise to two sets of critical Reynolds
numbers and circular frequencies. We note that due to coupling
of momentum and energy equation, the order of the system in-
creases, that increases the number of modes for flows with heat
transfer, as compared to only very few modes for flows without
heat transfer.
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Fig. 11. Disturbance quantity ud versus x at y∗ = 0.648δ∗ for excitation at Ff = 2.5 × 10−4 (Shown on left column) and Ff = 3.0 × 10−4 (Shown on the right
column), for Rix = 0.0 at the indicated times. Note the rays OA and OB in Fig. 3 correspond to these cases shown here.
To verify the observations of the linear analysis and to in-
vestigate the nonlinear and nonparallel nature of flow stabil-
ity, two-dimensional Navier–Stokes and energy equations have
been solved here by an accurate method, when the boundary
layer is excited by harmonic simultaneous suction and blow-
ing at the wall. This kind of receptivity study via solution of
Navier–Stokes equation have been reported for flows without
heat transfer in Fasel and Konzelmann [15] and Sengupta et
al. [1]. While Fasel and Konzelmann [15] have shown the exci-
tation of unstable Tollmien–Schlichting waves; in Sengupta et
al. [1] this was done for both stable and unstable systems, dis-
playing a leading wave-front. The present effort is an attempt
to establish the same for mixed convection flows for the first
time and to verify the features of linear stability studies. The
linear stability analysis features of the flow are clearly seen in
the DNS results. Such similarities are also noted for the oppos-
ing flow case of Rix = 0.0001,0.01, shown in Fig. 5(b) and (c).
In Fig. 6, we have compared the growth rate calculated by linear
stability theory and by DNS, for the case of Fig. 5(a).
We also establish the presence of spatio-temporal grow-
ing wave front for mixed convection flows, extending similar
observation in the study by Sengupta et al. [1,2] for Blasius
boundary layer. Results are shown in Fig. 7, for Rix = 0.01
for two frequencies of wall excitation. In the first case, the fre-
quency is chosen in such a manner that the constant frequency
line is tangential to the tip of the neutral curve—such that the
created disturbance is always attenuated. This shows up as a
severely attenuated traveling wave that is preceded by a spatio-
temporal growing wave front. This result is shown in Fig. 7(a).
In Fig. 7(b), a higher frequency is chosen, but the location of the
disturbance source is where the created waves are attenuated
by a lesser degree, as compared to the case of Fig. 7(a). Here
also, one sees a spatially decaying wave, preceded by the spatio-
temporal growing wave-front. In Fig. 8, time evolution of dis-
turbance field is shown for the disturbance streamwise velocity
and temperature field for opposing flow with Rix = 0.04, for
which the neutral curve in Fig. 4(b) show two loops of the neu-
tral curve. Here, wall excitation is applied before the beginning
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of the first unstable loop. Presented results show two stream-
wise stretches where the disturbances amplify. The length of
these stretches match only qualitatively with the linear stability
results, while the differences are due to nonlinear and nonparal-
lel effects. However, the results shown in Figs. 9 and 10, clearly
indicates that the influence of nonlinearity is rather very small,
for the case of Rix = 0.0 for the chosen frequency and ampli-
tude levels.

The results shown in Figs. 9 to 11, explain further the nature
of the disturbance field computed via DNS, focusing upon the
nonlinear and nonparallel nature of the flow instability with and
without heat transfer.
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